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ABSTRACT

A leading theory for the initiation of coronal mass ejections (CME) is the

breakout model in which magnetic reconnection above a filament channel is re-

sponsible for disrupting the coronal magnetic field. We present the first simu-

lations of the complete breakout process including the initiation, the plasmoid

formation and ejection, and the eventual relaxation of the coronal field to a more

potential state. These simulations were performed using a new numerical code,
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which solves the numerical cavitation problems that prevented previous simula-

tions from calculating a complete ejection. Furthermore, the position of the outer

boundary in the new simulations is increased out to 30 solar radii, which enables

determination of the full structure and dynamics of the ejected plasmoid. Our

results show that the ejection occurs at a speed on the order of the coronal Alfvén

speed and, hence, that the breakout model can produce fast CMEs. Another key

result is that the ejection speed is not sensitive to the refinement level of the grid

used in the calculations, which implies that, at least for the numerical resistivity

of these simulations, the speed is not sensitive to Lundquist number. We also

calculate, in detail, the helicity of the system and show that the helicity is well

conserved during the breakout process. Most of the helicity is ejected from the

Sun with the escaping plasmoid, but a significant fraction (of order 10%) remains

in the corona. The implications of these results for observation and prediction of

CMEs and eruptive flares is discussed.

Subject headings: Sun: corona — Sun: coronal mass ejections (CMEs) — Sun:

flares

1. Introduction

The most energetic and most dramatic manifestations of solar activity are the giant

disruptions of magnetic field and plasma known as coronal CMEs/eruptive flares. A large

CME can consist of > 1016 gm of coronal plasma accelerated to > 1000km s−1 on a time

scale of ∼ 1000 s. (In this paper, we emphasize fast CMEs typical of a major CME/eruptive

flare event, since these are the most important for space weather and the most difficult to

explain theoretically.) The overriding problem in understanding the physics of fast CMEs

is accounting for their explosive nature, a topic of intense theoretical study (e.g., Sturrock

1989; Van Ballegooijen & Martens 1989; Forbes & Isenberg 1991; Moore & Roumeliotis 1992;

Low & Smith 1993; Mikić & Linker 1994; Wu et al. 1995; Wolfson & Saran 1998; Amari et

al. 2000; Priest & Forbes 2000; Chen 2001). The basic energy source must be magnetic

stress that comes through the photosphere, either by direct motions or by emergence of pre-

stressed flux. However, the coronal system is driven very slowly: ∼ 1km s−1 footpoint speeds

compared to its characteristic Alfvén speed of ∼ 1000km s−1. Furthermore, the coronal field

is free to expand outward quasi-statically, which is the evolution usually observed and is

expected from analytic theory of the ideal behavior of a force-free coronal magnetic field

(Aly 1984, 1991; Sturrock 1991).

Due to these observational constraints, most of the present models postulate that CMEs
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represent the explosive release of magnetic energy stored in the corona, specifically, in the

strongly non-potential magnetic field of a sheared neutral line, or filament channel (see recent

reviews by Low 1996; Forbes 2000; Klimchuk 2001; Lin et al. 2003). Although a filament

eruption may not be observed with every CME, it is well known that all major solar activity

such as flares and CMEs are associated with a sheared neutral line (e.g.. Patty & Hagyard

1986; Schmieder et al. 1996). Furthermore, filament channels are the only locations in the

Sun’s corona where the field appears to be strongly non-potential and, hence, where large

amounts of free energy can be stored. It appears highly likely, therefore, that the underlying

cause of CMEs, eruptive flares, and filament ejections is the disruption of a force balance

between the upward pressure of the sheared filament channel field and the downward tension

of overlying coronal field that is quasi-potential.

A key point is that the upward pressure cannot increase rapidly, because the mag-

netic shear/twist is produced by the slow photospheric evolution (shear flows and/or flux

emergence). Therefore, explosive events such as CMEs must be due fundamentally to the

catastrophic removal of the downward magnetic tension of the overlying coronal field. Re-

cent theory and simulation has focused on magnetic reconnection as the mechanism for the

removal of the magnetic tension, (Low 1996; Forbes 2000; Klimchuk 2001; Lin et al. 2003).

Only two reconnection models have been proposed that have successfully demonstrated ex-

plosive eruption with full-MHD numerical simulations: flux cancellation (Amari et al. 2000)

and magnetic breakout (Antiochos et al. 1999). In the cancellation model, reconnection is

postulated to occur at the photospheric neutral line below a filament channel, producing a

twisted flux rope in the corona and eventually leading to a loss of equilibrium (Forbes 2000).

In the breakout model reconnection at a null point above a filament channel leads to the

removal of overlying flux and to an explosive outward expansion (Antiochos 1998; Antiochos

et al. 1999). At present, neither model can be considered to have been either definitively ver-

ified or refuted by the observations. However, there have been a number of studies recently

which strongly support a breakout interpretation for some well-observed CME/eruptive flare

events (e.g., Aulanier et al. 2000; Sterling & Moore 2001).

It should be emphasized that both models predict a similar evolution once the eruption

is well underway. The rapid upward expansion of the filament channel field causes a current

sheet to form below the erupting field, resulting in strong reconnection there. This recon-

nection produces a highly twisted plasmoid that escapes from the corona and leaves behind

the hot X-ray, flare loops, as in the standard model (Carmichael 1964; Sturrock 1966; Hi-

rayama 1974; Kopp & Pneuman 1976). An important issue for any model is the speed of the

escaping plasmoid. In order to account for fast CMEs, the erupting plasma must be ejected

from the Sun at speeds of order the Alfvén velocity. But the previous numerical studies of

breakout could not calculate the actual ejection itself (Antiochos et al. 1999). These stud-
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ies were a critically important first step, because they showed how a multi-polar magnetic

topology could contain sufficient free energy to open up the filament channel field and still

be compatible with the Aly-Sturrock energy limit (Aly 1991; Sturrock 1991), but they could

not verify that a fast CME would result. The problem was that once the eruption picked

up significant speed, the reconnection at the rapidly moving coronal null led to numerical

cavitation there (i.e., very low densities), and the simulations developed severe numerical

inaccuracies.

Our goal in this paper is to calculate the complete evolution of the breakout eruption,

including the formation and escape of the plasmoid. The main issues that we focus on are

the speed of the eruption and the evolution of the magnetic helicity in the corona. We use

the exact same 2.5D geometry and magnetic topology as in Antiochos et al. (1999), but we

employ a more robust numerical code that mitigates the effects of cavitation by applying a

mass diffusion at grid cells where the density exhibits too large a density drop. In addition,

we extend the computational domain out to 30 solar radii so as to be able to follow the

evolution of the plasmoid well after it has been ejected from the corona. A larger outer

radius also helps minimize any effects from the boundary conditions there. The physical

model and the code are described in detail below.

2. Description of Numerical Model

Our model follows that described in Antiochos et al. (1999) in most details, and so we

limit our description of it to a summary of the essential features, and a detailed exposition

of all significant modifications.

The idealized model has a complex initial field geometry, with azimuthal symmetry.

It has four flux systems, as shown in the first panel of Figure 1. An inner flux system is

centered on the equator. Mid-latitude flux systems are centered on latitude ±45◦, and at

large radius there is an overlying dipole system. These four flux systems are bounded by two

separatrix surfaces which intersect in the corona at an X-point (actually an X-line due to

the axi-symmetry). A footpoint shear is applied to the inner equatorial flux system, which

causes it to expand outward and push against the overlying field, deforming the X-point

to a current sheet. Reconnection between the equatorial and overlying systems causes flux

in the inner region to be transferred to the mid-latitude flux systems, which induces the

remaining inner flux system to expand outward even faster. This feedback causes an ever

increasing outward expansion of the field which eventually leads to an explosive opening of

the overlying field, formation of a lower X-line and flux rope, and escape of some of the

sheared inner flux to infinity.
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2.1. Equations

To model this scenario, we solve the equations of ideal MHD including gravitational

acceleration :
∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂

∂t
(ρv) + ∇ · (ρvv) + ∇p =

1

4π
(∇×B)×B − ρg, (2)

∂U

∂t
+ ∇ · (Uv) + p∇ · v = 0, (3)

and
∂B

∂t
= ∇×(v×B). (4)

where ρ is mass density, v is velocity, p is gas pressure, U = 3p/2 is the internal energy, B

is magnetic induction and g = goer/r
2 is gravitational acceleration.

2.2. Numerical Techniques

Our numerical code is a modified version of the code described by DeVore (1991). It

uses a multi-dimensional Flux Corrected Transport(FCT) algorithm in spherical coordinates,

and guarantees to preserve the divergence-free condition on the magnetic field to machine

accuracy. The code is second order accurate in space and time for a uniformly spaced grid.

We have modified the application of the flux limiter to achieve greater consistency in

its use across the set of equations. The FCT algorithm can be viewed as a combination

of high and low order algorithms. The low order algorithm is the same as the high order

algorithm, but has a known explicit diffusion, added to ensure that the low order solution

retains positivity and monotonicity. For a given timestep, the solution for each equation is

computed using the low order scheme. Anti-diffusive fluxes are then computed which remove

as much of this additional diffusion as possible, under the constraint that the anti-diffusion

step cannot introduce new extrema into the solution or accentuate any existing extrema. For

each equation the fraction of the anti-diffusive flux which can be applied without violating

this constraint is recorded. We then take the minimum of the fractions associated with the

mass and energy densities, and then apply these to limit the anti-diffusive fluxes used to

complete the updated solutions for all the hydrodynamic variables.

From a numerical perspective, the most challenging aspect of this simulation has been

to develop an algorithm which is robust enough to handle regions of ultra-low density. In this

simulation we expect ultra-low density regions to develop. Where current sheets tear, we will
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have divergent flows at Alfvénic speeds in an already low density plasma. We will also have

the cross-section of a flux-rope with helical fieldlines expanding rapidly as it rises through

an atmosphere in which the density varies approximately as r−5. In any MHD code these

ultra-low density regions pose problems associated with the temporal and spatial accuracy

of the algorithms discretization, and with the assumptions inherent in the non-relativistic

MHD description.

If the density in our numerical solution drops to unphysical ultra-low values in regions

of strong magnetic field, the Alfvén speed can grow to be a significant fraction of the speed

of light. To properly model this regime would require a kinetic description with relativistic

equations. We would be forced to use such short timesteps to achieve stable and accurate

solutions, that the calculation would be prohibitively expensive. Since we do not believe

these high frequency modes are important in the global evolution of CMEs, we retain a non-

relativistic MHD approximation. However we modify the momentum equation following an

approach pioneered by Boris (1970), commonly known as the ‘Boris correction’. 5 The time

derivative in the momentum equation is replaced by

∂

∂t
(ρv) −→ ∂

∂t
M (5)

M = ρ
(
v(1 + q2)− qq · v)

)
(6)

with

q =
B√
4πρc2

=
va

c
(7)

where va is the Alfvén velocity. As the local Alfvén speed becomes significant in comparison

with the speed of light, this has the effect of increasing the inertia associated with the

momentum in the direction perpendicular to the local magnetic field. By choosing artificially

low values of c in equation 7 we effectively dampen cross-field accelerations in regions of low

mass density. In our code we chose a value of c = 3000km s−1.

The ‘Boris Correction’ helps to reduce the risk of numerical cavitation. We also follow

the standard practice in MHD codes, of setting the field-aligned component of the Lorentz

force to zero. However in an ideal MHD code, when rapid reconnection occurs, significant

fieldline curvature develops on scales close to the grid cell size. Inevitably this leads to errors

due to spatial discretization. When these errors occur in regions of low density the potential

for cavitation exists. In our FCT code we conjecture that this potential can be compounded

by differences in the phase errors which occur in the solutions to the mass and momentum

5The code used by Antiochos et al. (1999) employed a version of the Boris correction which had no
dependence on the local field direction.
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density equations. In the neighborhood of rapid reconnection strong Lorentz forces occur in

close proximity to regions of divergent flow with low density. If phase errors cause excess

momentum to bleed into these low density regions the result is excessively large velocities

which can drive the evolution of the magnetic field in unphysical ways.

To avoid this problem we have developed a tunable method for additional limiting of

the anti-diffusive fluxes in the neighborhood of very low densities. The factor by which the

anti-diffusive fluxes are reduced is multiplied by the function

h(r, θ, t) = 1− h∗(r, θ, t). (8)

evaluated on the faces of each grid cell. When h∗ = 0, no reduction in anti-diffusion occurs.

We set h∗ at cell center to be

h∗ =

{
min

(
1, [(3− ρ

ρmin
)2

3
]2

)
, if ρ < 3ρmin;

0 otherwise.
(9)

This choice is somewhat arbitrary, and is designed to increase smoothly from 0 to 1 as ρ drops

below 3ρmin to 1.5ρmin. The value of h∗ at each cell interface is then computed by averaging

the value in the cells each side of the interface. In addition we apply a diffusive operator

to h∗ to spread its influence into the immediate neighborhood, with a diffusion coefficient

which is given by 1/(8 dt). Finally, at the start of each timestep we decay the existing value

of h∗ by 0.125 so that excess diffusion is maintained only as long as it is required.

We set the value of ρmin to

ρmin =
1

40
ρ(r, t = 0). (10)

This approach is effective in reducing the severity of cavitation events. It is applied to the

hydrodynamic variables, but not to the magnetic field. Since the only additional diffusion

which the magnetic field will experience is produced through the indirect influence of the

extra mass and momentum diffusion, we expect this to be weak.

2.3. Numerical Grid

We assume azimuthal symmetry and, consequently, solve the MHD equations above in

2.5D.6 The computational domain extends from an inner radial boundary (1r�) at the solar

6The variables ρ,v, U, B are functions of r and θ, but not φ since ∂/∂φ = 0, but the vectors v,B can
have non-zero components in the φ direction.
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surface, to the outer radial boundary at 30r�, and from the north pole, θ = 0 to the south

pole θ = π. In principle the equator represents a symmetry plane in this idealized model, and

we could choose to model only one hemisphere. However, we believe there is an important

symmetry breaking process in this problem, associated with the development of magnetic

islands on the equatorial radius (see section 3.1). This may influence the observed speed of

eruption, and so we choose to model the full θ range.

The numerical grid has a static adaptive refinement superimposed upon a base grid that

is uniformly spaced in the theta direction. The grid spacing is proportional to r in the radial

direction, so that the grid cell aspect ratios are constant, and not a function of r. The base

grid has a resolution of 128 × 256. In the inner regions we have two additional refinement

levels as shown in Figure 2. Each refinement level has grid spacing reduced by a factor of 2

over the previous refinement level, so that near the equator on the inner radial boundary the

resolution is equivalent to a grid of 512× 1024. The figures in this paper show results from

runs with this grid, but for comparison, we have also performed simulations with larger and

smaller refinement levels.

The non-uniform radial spacing makes the code nominally first order accurate spatially.

However, the second order error term introduced by the nonuniform spacing has a coefficient

whose magnitude is determined by the rate at which the grid spacing changes. In our grids

this spacing changes slowly. As a result we believe that the contribution of this error term

to the total error is not larger than the contribution from the third order error terms, for

the resolution we have used. We have validated the code by substituting a computationally

expensive fourth order spatial interpolation function where appropriate, to make the code

formally third order accurate, and have shown that this makes no significant qualitative

difference to our results, at the resolution of our current grid.

2.4. Initial Conditions

The initial magnetic field is potential and consists of a combination of dipole and oc-

tupole components. Due to the azimuthal symmetry, it is easily expressed in terms of Euler

potentials,

B = ∇α(r, θ)×∇φ, (11)

where we choose,

α(r, θ) = sin2 θ
r�
r

+ (3 + 5 cos 2θ) sin2 θ
r3
�

2r3
. (12)

This form for the flux function α produces a field with four distinct flux systems as shown

in Figure 1. At large radius the field is dominated by the dipole component. Near the solar
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surface there is an inner flux system centered on the equator, bounded at higher and lower

latitudes by two additional flux systems. There is a null point at a radius of r =
√

3r�, and

the field-lines passing through this point define separatrices bounding the four flux systems.

Since the initial numerical magnetic field only samples the analytic potential solution,

the numerical Lorentz force will be approximately zero, but not exactly zero. Therefore, we

subtract this small numerical Lorentz force associated with our initial field from the time-

dependent Lorentz force evaluated during the simulation. As a result the initial field is a

true equilibrium of our modified algorithm, and does not evolve until we perturb it.

The initial mass density is computed as a solution to the equation of hydrostatic equi-

librium, with a temperature profile given by

T (r) = T�
r�
r

K, (13)

and consequently an initial density profile of

ρ(r) = ρ�

(r�
r

)1−µ

, (14)

with µ = 2kBT�/g�, where T� = 2× 106K is the temperature, ρ� = 2× 108mpgm.cm−3 the

mass density, and g� = 2.7 × 104cm.s−2 the gravitational acceleration at the inner radial

boundary.7. The temperature and density profiles are chosen so that the plasma beta in the

model is small, in agreement with the real corona. For the form of α given above, we find

that, at the solar surface, the magnetic field strength is 2G at the equator and 10G at the

poles, which yields a value for beta varying from 0.5 to 0.02 at the poles. The value for

beta along a radial line at the equator and at 45◦ are shown in Figure 3. Of course the beta

diverges at the magnetic null, but we note that along the mid-latitude line, beta remains

smaller than unity out to large radius.

2.5. Boundary Conditions

At the inner radial boundary (r�), we enforce a line-tied condition on the magnetic

field. This boundary is also assumed to be impenetrable. More precisely, these conditions

are imposed by setting
∂Br

∂t
= 0 (15)

vr = 0 (16)

7This density is twice the base density used by Antiochos et al. (1999)



– 10 –

on the boundary.

The system is driven by imposing a shear velocity profile in the φ direction on the inner

boundary. The shear is applied in a narrow region centered about the equatorial neutral

line. The velocity is antisymmetric about the equator with a latitudinal dependence given

by,

vφ =

{
0 if |ψ| > Θ.

V0(ψ
2 −Θ2)2 sinψ if |ψ| ≤ Θ.

where ψ = (π/2−θ), Θ = π/15 defines the latitudinal extent of the shear region on each side

of the equator, and the shearing amplitude V0 = 8682.52r�(π/2). The shearing is applied

with a sinusoidal time profile of period 2τ , and is imposed for a half cycle of the sinusoid, i.e.

for a time interval of τ = 100000s. As a consequence of this shear, the maximum angular

displacement in azimuth of a field line footpoint at the photospheric boundary is π/2, which

implies a maximum velocity < 10km s−1 and an average shear velocity considerably less.

From Figure 3 we note that in our model corona the Alfvén speed can exceed 300km s−1,

which indicates that although our system is not driven as slowly as the real corona, it is still

driven quasi-statically. It should be emphasized that the photospheric shear assumed in our

model is merely a convenient method for driving the system, it is not meant to represent

the process by which a real filament channel forms. Flux emergence is likely to play a major

role in the formation process, but modeling flux emergence in a coronal simulation is very

difficult computationally. As long as the system is driven quasi-statically, we do not expect

the detailed process by which the shear forms to have a significant effect on the eruption

dynamics, at least, in the breakout model.

In these simulations we attempted to place the outer radial boundary as far out as

computationally possible, r = 30r�, so that it would have a negligible effect on the eruption

structure and evolution. As will be seen below, the eruption is well into its decay phase before

the shock or the ejected plasmoid reaches the outer boundary. Open boundary conditions

are imposed there. At the polar boundaries, the boundary conditions are determined from

the azimuthal symmetry constraint.

3. Results

3.1. Evolution of Velocity and Energy

The evolution extends the initial results obtained by Antiochos et al. (1999). The field

and plasma evolution is illustrated in a sequence of snapshots shown in Figures 1, 4, 5 and

6. Figures 4 through 6 show the evolution of the field superimposed upon color density
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maps of the mass density, radial velocity and helicity respectively. Note that the field-lines

in our model are three dimensional objects, since we solve for all three components of B.

To display them here we project them onto a single plane, by plotting every point along

each 3D field-line, not at its true location (r, θ, φ), but instead at (r, θ, 0). The field-lines

in these figures have been drawn by choosing a set of starting points in the φ = 0 plane

and tracing the field-lines (in both positive and negative directions) beginning at each of

those points. We selected starting points on the inner boundary, and at points along the

equatorial radial axis. Some field-lines are terminated prematurely if they extend beyond

the range −π/4 < φ < π/4, or after they have accumulated 3000 arc segments, to avoid

clutter. When comparing the frames at different times, it should be kept in mind that only

those field lines that are traced from starting points on the inner boundary are the “same” in

the different frames and, therefore, show the motion of a particular field line (assuming the

evolution is ideal). In order to show the plasmoid with disconnected field lines that forms,

we also use starting points along the equatorial radius. Since these points are fixed in space,

the field lines traced from these points are not the same in the different frames, but they can

be used to illustrated the general position of the plasmoid.

It is evident from Figure 1 that as the inner flux system is stressed, it expands outward,

pushing up against the overlying field which inhibits its expansion. The X-point between the

two systems deforms into a current sheet elongated in the θ direction. When the thickness of

this current sheet reaches the grid scale, the effects of numerical diffusion become significant

and the two systems begin to reconnect. We will refer to this reconnection as the ‘breakout’

reconnection. Field-lines at the outer edges of the inner flux system reconnect with overlying

field, and subsequently snap back to join the inner mid-latitude flux systems, allowing the

remaining inner flux system to expand further outward. As a result of the large outward

expansion, the field lines deep in the inner system begin to approach an open geometry and,

hence, a radial current sheet develops there. Again, when the current sheet thickness becomes

of order the grid scale, diffusion becomes significant and reconnection sets in. We will refer

to this as the ‘flare’ reconnection. The flare reconnection produces a disconnected flux rope

(plasmoid) between the inner and outer flux systems, which continues to rise. The plasmoid

eventually escapes from the system, and the inner field relaxes back to a configuration which

is similar in general features to its original configuration, but with much less shear. We

emphasize that the flare reconnection and the production of a disconnected flux rope are

certainly not unique to the breakout model. They are an inevitable consequence of eruption,

and are well-known features of essentially every 2.5D model (e.g., Mikić & Linker 1994).

Another feature that is evident in Figure 1, especially in the late stages of the eruption, is

the appearance of a large magnetic island in front of the ejected plasmoid. The origin of this

island is the artificial symmetry in the simulation. When the breakout current sheet becomes
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sufficiently extended in the θ direction so that its length to width ratio begins to exceed a

factor of 10 or so, magnetic tearing occurs, causing the sheet to break up into multiple

islands (Furth et al 1963). Island formation is a ubiquitous feature of 2.5D reconnection,

especially in simulations with high spatial resolution so that long current sheet can develop

(e.g., Karpen et al 1996; Shibata et al. 1992). Note that in our simulation, magnetic islands

also form in the flare current sheet along the radial direction. But these islands are short-

lived and remain small, because they rapidly migrate either up or down along the radial

current sheet and merge with the inner or outer flux systems. We expect that, in reality,

islands forming in the breakout current sheet would also be short-lived, but the mathematical

problem that we solve has a symmetry plane at the equator, with ρ, p, U, vr, Bθ, Bφ symmetric

and vφ, Br anti-symmetric with respect to reflection in the equatorial plane. If an island

forms that is centered about the equator, as is almost certain to occur, then due to the

equatorial symmetry, such an island cannot move either up or down along the current sheet

and disappear. An equatorially symmetric island can only grow indefinitely. Note that such

an island chokes off the breakout reconnection by converting the X-point to an O-point.

All the mass and field accumulated in the island must be ejected outward along with the

plasmoid; hence, the island slows down the eruption. By simulating the full θ range rather

than only a single hemisphere, as discussed in 2.3, we break the symmetry numerically, and

mitigate these effects. Islands form almost immediately in the breakout current sheet, but

early in the eruption they are small and there is enough numerical asymmetry present to

move them up or down. It is only in the late stages when the ejection is moving near the

Alfvén speed that a large persistent island forms.

The critical issue for any CME model is the speed of the eruption. To account for

fast CMEs, the ejection speed must be of order the Alfvén velocity. Furthermore, since all

numerical simulations have effective resistivity orders of magnitude higher than the solar

value, any viable CME model must predict a negligible dependence of ejection speed on

Lundquist number. In order to determine the ejection speed in the simulation, we define the

leading edge of the eruption to be the position of the X-point ahead of the plasmoid. This

quantity is shown as a function of time in Figure 7. Since Bθ changes sign at the null, we can

accurately obtain the position of the X-point by calculating the location of the outermost

extremum in the radial integral of the Bθ flux through the equatorial plane,∫ r

r�

Bθ(r
′, θ, t)r′ sin θ dr′. (17)

This procedure has the added advantage that it takes into account the fact that the X-point

changes to an O-point late in the evolution.

As the inner flux system expands, the X-point moves outward at a speed determined

by the slope of this curve. Just before the plasmoid pinches off due to the onset of flare
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reconnection, this slope indicates an expansion speed of 50km s−1. Once the flux rope pinches

off, at about 73000 seconds, the outer X-point accelerates rapidly, reaching an ‘ejection’

speed of 365km s−1 before it reaches the outer limit of our simulation. Almost all the

acceleration occurs below 3r�. For comparison, the Alfvén speed at the equator at 3 solar

radii before the flux rope arrives is 65km s−1, and at 45o north it is 160km s−1, Figure 3.

As the plasmoid moves outward, it creates a density enhancement around it as it sweeps up

coronal material, Figure 4. Since the plasmoid is moving at supersonic and super-Alfvénic

speeds, a magnetoacoustic shock forms at the leading edge of this enhancement, Figure 5.

These results verify that, at least for this simulation, the breakout model does produce a

fast CME.

In order to determine the dependence on resistivity, we have run identical simulations

but with refinement levels one lower and one higher than that shown in Figure 2, corre-

sponding to effective grids of 256 × 512 and 1024 × 2048 respectively. Grids larger than

1024× 2048 are too cpu-intensive to run in reasonable times, and as will be discussed below,

3.3, grids smaller than 256× 512 are too inaccurate. The evolution is qualitatively identical

for all cases, with a plasmoid ejection as in Figures 1 to 5. For quantitative comparison,

Table 1 lists the position and velocity of the outer X-point at approximately 85,000 s when

the eruption is fully developed and is approaching its maximum velocity. It is evident that

the speed does not decrease with refinement level, in fact, it exhibits a significant increase

between the first and second case, and a small increase between the last two cases. We

believe the primary reason for this increase is that a larger grid implies a smaller effective

resistivity and, consequently, the system can build up more free energy before it begins to

reconnect. As is evident from Figure 1, the onset of breakout reconnection and the ejection

of the plasmoid occurs well before the end of the shearing phase at, t = 100, 000 s. Delaying

the eruption implies that it will release more free energy and, therefore, have higher initial

acceleration. Of course, the maximum velocities in the system are limited by the Alfvén

speed, and it appears that the last two refinement cases are approaching this limit.
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Table 1. Upper X-point Position and Speed at Time of Maximum Velocity.

Max. Resolution Radius(units of r�) Velocity(km s−1)

256x512 3.6 170

512x1024 4.3 233

1024x2048 4.4 233

Note. — Data refer to time 85000 seconds in each case.
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Another important issue for all models is the energetics of the eruption. The fast ejection

speed in our simulation implies that the kinetic energy should play a major role. Figure 8

shows the evolution of several important energy terms in the system. Since the system is

driven by the shear flow in the azimuthal direction, the bulk of the free energy is stored

in the azimuthal field, B2
φ. The azimuthal energy rises smoothly reaching a maximum at

around 65,000 s, and then begins to decrease due to the onset of outward expansion, even

though the shearing continues on until 100,000 s. Between 65,000 and 80,000 s, the free

energy in the non-azimuthal components, B2
r +B2

θ rises rapidly, implying that the energy is

being transferred from the azimuthal to non-azimuthal components of the field. This time

period corresponds to the creation of the radial current sheet deep in the inner flux system,

and to the onset of reconnection there. From 80,000 to 90,000 s, the non-azimuthal field

decreases sharply, corresponding to a steep rise in kinetic energy. We note that the kinetic

energy accounts for approximately half the energy lost by the field. The rest is taken up

primarily by the increase in gravitational energy, and to a lesser extent by internal energy at

the current sheets and shocks. Since not all the azimuthal field is injected into the plasmoid,

a fraction remains in the closed field region that does not erupt, we also show in Figure

8 the azimuthal magnetic energy below 1.5 solar radii. Comparison of the total azimuthal

energy with that below 1.5 solar radii, indicates that by the end of the simulation, 120,000

s, almost all the azimuthal magnetic energy in the ejected plasmoid has been lost due to the

plasmoid’s large expansion.

3.2. The Rapid Acceleration Phase

In Figure 7 we see that the outward radial expansion of the sheared flux is slow and grad-

ually accelerating at first, but begins a period of rapid acceleration around 70,000 seconds.

What triggers this rapid acceleration phase ?

The first point to recall is that, since we solve the ideal equations, the resistivity in our

calculation is numerical, which means that it is strongly scale dependent. For regions where

the gradients in magnetic field are well resolved, scale lengths greater than 10 grid points, the

effective Reynolds number is of order 10,000 or higher. But once the scale lengths decrease

to the size of a few grid points, or less, the effective Reynolds number becomes of order unity.

We expect that on the real Sun a similar situation holds in that once a coronal current sheet

becomes strong enough, some current-driven instability or kinetic effect kicks in, increasing

the effective resistivity. Hence, the trigger mechanism for the eruption in our simulations is

the onset of reconnection at the upper null due to the turn-on of a large numerical resistivity,

but in fact, such a clear-cut trigger may not be necessary for the model.
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At the start of our simulations the magnetic field is potential and the scale for the

gradients at the coronal null is large, tens of grid points. But as the the neutral line shear

increases, the coronal field expands outward, deforming the field at the null. As discussed in

Antiochos et al. (1999), the scale at the null (width of the currents there) decreases inversely

with the radius of the null point (amount of expansion). We find that as long as the magnetic

scale at the null is large compared to the grid size, there is no measurable reconnection (on

the time scale of the runs). The system appears to be in a stable equilibrium with no

evidence for either instability or loss-of-equilibrium. This is true even if the energy in the

field increases to a value well above the minimum open field energy. It should be emphasized

that such a stable energy buildup phase is necessary for any fast-CME model to be viable.

But as the shearing continues, the width of the current structure at the null eventually

drops to the grid scale and reconnection begins. Once reconnection appears, we find that

the expansion simply runs away, even if one stops the shearing at this point. This result is

the motivation for our argument concerning the feedback mechanism.

One could claim that the trigger mechanism in our model is actually the ”turn-on” of

numerical resistivity due to its grid dependence, and for our particular calculation, this is

certainly justified. (It may also be the case for the real Sun). But we question whether such

an abrupt turn-on of resistivity is really necessary for the model to operate.

Even if the resistivity were constant and independent of grid scale, the magnetic diffusion

rate would still have a strong scale dependence (varying as the square of the scale); therefore,

it is likely that one would still obtain an evolution similar to that described above. For

small shear the rate of reconnection at the null would be negligible compared to the rate

of shearing and expansion, so that one would still have a stable energy buildup phase.

Furthermore, one would expect the scale at the null point to decrease with expansion until

eventually the rate of reconnection there became significant compared to the ideal evolution

rates. The critical question is how the reconnection affects the subsequent evolution. The

ongoing reconnection continually acts to drive the system further out of force balance which

accelerates the rate at which the flux tries to move through the x-line (including also the

lower x-line, once it appears). Thus, as long as some finite resistivity is present, a feedback

occurs which rapidly accelerates the outward expansion. Consequently, we expect that even

with a constant resistivity, the evolution of the null point would resemble that shown in

Figure 7, in that one should see a nearly non-reconnecting, linear expansion phase followed

by an exponentially-increasing expansion phase, but probably with a less abrupt turn over

from linear to exponential. If so, then the key feature of the model is the positive feedback

between reconnection and expansion, not the fact that the resistivity has a sharp turn-on.

On the other hand, there is no doubt that the use of numerical resistivity in the present
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simulations helps define a clear trigger to the eruption.

The lower X-line appears and a flux rope begins to form at about the same time as the

onset of rapid outward expansion. It might be argued that this timing indicates that the

rapid expansion phase is due to a loss-of-equilibrium, rather than the reconnection feedback

mechanism. A loss-of-equilibrium has been seen in a number of flux rope studies, and is

the trigger mechanism for the flux cancellation models. If true, this would bring the flux

cancellation and breakout models into a common physical framework. However, while we

recognize that this simulation does not answer the question definitively, we doubt that a loss-

of-equilibrium is operating in our simulations, because the system begins its rapid outward

expansion well before a substantial plasmoid forms. By 73,000 s, when the lower X-line

first appears, the system has already entered its rapid acceleration phase, and a substantial

plasmoid is not present until around 80,000 s, at which time the eruption is near its final

velocity. 8 In the flux cancellation models, equilibrium is lost only after the plasmoid contains

a substantial amount of flux. For example, in the recent paper by Lin et al. (2004), these

authors estimate that the initial stable, pre-eruption flux rope contains roughly half the

ejected flux. Of course this fraction will depend on the particular magnetic configuration,

but it seems inevitable that in order for a flux rope to produce a loss-of-equilibrium, the

rope must contain a significant fraction of the flux in the system. This is not true for our

simulations.

3.3. Evolution of Helicity

The role of helicity in CMEs has received considerable attention in recent years. Several

authors have argued that CMEs are the primary mechanism by which the Sun sheds excess

helicity and toroidal flux and, consequently, CMEs may play a key role in the solar cycle

(e.g., Bieber & Rust 1995; Kumar & Rust 1996; Low 2001; Rust 2001; Demoulin et al 2002;

Nindos et al 2003; Gopalswamy et al 2003). It is important, therefore, to understand the

evolution of helicity in models of CME initiation such as breakout. We can investigate this

question in detail with our simulations.

Since the Solar surface does not represent a flux surface, the helicity

K =

∫
A ·B dV (18)

8The magnetic flux crossing the equator between the inner X-line and the center point of the flux rope is
2.1×1021Gauss.cm2 at 75000s, or 9% of the total of 2.3×1022Gauss.cm2 in the original inner flux system. By
80000s this has risen to 5.1×1021Gauss.cm2(22%) and by 82500s it was reached 9.3×1021Gauss.cm2(40%).
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is not conserved in ideal MHD. However the relative helicity (Berger & Field 1984; Finn &

Antonsen 1985)

Kr =

∫
(A + Ap) · (B −Bp) dV (19)

is conserved, where Bp is the potential field with the same flux distribution through the

surfaces bounding the computational domain as B. If we choose Bp to be the initial potential

field given by Equations (5) and (6), then this condition is satisfied, since our line-tying

boundary condition at the solar surface requires that Br not change with time. Under

conditions of azimuthal symmetry, the helicity density can be written as (Antiochos et al.

2002)

kr(r, θ, t) = 2AφBφ (20)

so the total relative helicity at time t is given by

Kr =

∫
kr(r, θ, t) dV. (21)

In Figure 6 we show the distribution of helicity density at various stages in the evolution

of the system. The helicity shed by the ejection of the plasmoid represents approximately

80% of the total originally injected into the system. This result suggests that although CMEs

remove the bulk of the coronal helicity, a significant fraction remains behind, which implies

that some other mechanism operating in the corona itself must be responsible for dissipating

the rest of the helicity. There are several caveats, however, to this conclusion, the main one

being that in our simulation we consider only the helicity associated with the neutral line

shear. This limits all the helicity carried off by the ejected plasmoid to be contained in an

inner core region of the plasmoid comprised of the sheared field. In the real corona there is

likely to be considerable helicity associated with large-scale magnetic fields, because of the

effects of differential rotation (DeVore 2000) and active region motions on a global scale. If

this overlying field opens up during the eruption, then it will lose essentially all its helicity,

and the fraction of coronal helicity carried away by a CME could be substantially greater

than 80% of the pre-eruption value.

3.3.1. Influence of Spatial Resolution

The helicity density is a useful quantity for investigating not only the physics of the

eruption, but also the numerics of the simulation. Since we do not solve an equation for the

evolution of helicity density, we can use this quantity as a stringent error measure for the

calculation. The rate at which relative helicity is injected into the model at the solar surface
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is given by the surface integral

dKr

dt
= −2

∫
BrAφvφ dS (22)

where dS is an element of the surface.

Based on Taylor’s conjecture (Woltjer 1958; Taylor 1974; Berger 1984), we expect the

relative helicity to be conserved to a good approximation, because the reconnection caused

by numerical diffusion occurs in only a small fraction of the simulation volume. If we compare

the time integral of the helicity injection rate with the volume integrated relative-helicity

density, we can check whether this is the case. These quantities are compared in Figure 9,

which shows that at the resolution of our calculation, helicity is well conserved even during

the strong reconnection and eruption phase. This test is highly sensitive to the spatial

resolution. For the same simulation on a grid of 256 × 512 points we found that helicity

was misconserved by 20% and on a grid of 128× 256 points by more than 50%. The ultra-

high resolution, 1024 × 2048 run showed an even better agreement between injected and

measured helicity than in Figure 9. These results indicate that a grid of 512 × 1024 is an

optimal resolution for the simulation. Larger grids do not add significantly more accuracy,

whereas smaller grids start to degrade the calculation noticeably. Figure 9 also demonstrates

the robustness and low-diffusivity of our code, and the advantages of using an adaptive mesh

for physical systems the the breakout model where we expect current sheets to form in only

a few locations.

4. Discussion

We have presented in this paper the first simulations of a complete breakout CME.

These calculations have allowed us to answer a number of major questions concerning the

eruption. The most important result concerns the speed of the eruption. We find that the

model does, indeed, produce fast CMEs with ejection velocities of order the Alfvén speed.

Even more important, the ejection speed does not appear to be sensitive to the refinement

level of the calculation, i.e., to the effective resistivity, at least, for a resistivity with a spatial

scale dependence similar to that of numerical resistivity. These two conclusions show that

the breakout model efficiently converts the free magnetic energy stored in the system to

kinetic energy. One caveat, however, is that the simulations presented here are only 2.5D,

whereas a real CME is fully 3D. There will clearly be major differences between 3D and 2.5D

calculations, in particular, a disconnected flux rope will not form in 3D. But the underlying

topology of a multi-polar flux system with null points in the corona remains unchanged in

3D (e.g., Antiochos 1998; Aulanier et al. 2000); therefore, we believe it likely that many of
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the important results in this paper, such as ejection speed and the general evolution shown

in Figures 1 through 5, are likely to remain valid in 3D geometries.

Another important result of the simulations is that although most of the helicity in the

system is ejected during eruption, a significant fraction remains in the corona. In fact, this

result is to be expected. It is well-known observationally that neutral-line shear does not

disappear during an eruptive flare (e.g., Wang et al. 1994). CMEs may responsible for most

of the helicity loss of the corona, but it seems clear that some other mechanism, possibly

small-scale diffusion, eliminates the remaining neutral-line shear. This conclusion raises the

interesting question as to whether CMEs are essential for eliminating coronal helicity as has

been argued by numerous authors.

The work presented here also raises interesting questions concerning observational tests

of the breakout model and the implications for CME/eruptive flare prediction. The most

convincing observation would be to detect evidence of breakout reconnection before a CME

and the accompanying flare. A critical question, therefore, is the amount of breakout recon-

nection that one would expect to observe before CME and flare onset. The answer can be

obtained from Figure 10, which plots the total flux below the outer X-point as a function

of time. It is evident that by the end of the simulation, approximately half of the original

flux overlying the sheared neutral line has been removed by breakout reconnection. The key

point is that most of this reconnection occurs after 80,000 s, i.e., after the rapid acceleration

(Figure 7) and the flare reconnection (Figure 1) have clearly started. We emphasize, how-

ever, that even though the bulk of the breakout reconnection occurs during what would be

observed as the eruption/flare, itself, this reconnection is essential for the event to take place.

As discussed in Antiochos et al. (1999), the sheared field configuration does not have enough

energy to open up the overlying restraining field. This restraining field must be moved out

of the way by reconnection.

The implications of our results for observations are that the strongest signatures of

breakout are likely to be present during the flare impulsive phase. In retrospect, this finding is

not surprising. Breakout reconnection is driven by outward expansion of the field and, hence,

will be strongest during the CME rapid acceleration phase when the outward expansion is

largest. But a large outward expansion will inevitably produce a current sheet below the

erupting flux, which will drive flare reconnection there. In fact, our analysis of the July 14,

1998 eruptive flare showed exactly this behavior (Aulanier et al. 2000). In that event, there

was clear evidence of breakout reconnection before flare onset, but the most pronounced

signatures were observed during the flare impulsive phase. Our results on the relative timing

of breakout reconnection, CME acceleration and flare onset also appear to be in agreement

with recent observations by Zhang et al (2001) and Gallagher et al (2003) who find that
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flare-associated, CMEs have a slowly rising initiation phase, followed by a fast acceleration

phase roughly coincident with the flare impulsive phase. With further data analysis and

theoretical modeling, especially in 3D, it should be possible to determine whether this CME

initiation phase and rapid acceleration are due to magnetic breakout.

This work was supported in part by NASA, NSF, and ONR. We would also like to

thank the referee whose insight and attention to detail prompted us to clarify our discussion

of some key issues.
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